Artificial Neural Networks, Machine Learning, Deep Thinking Training Course

Primary tabs

Course Language

This course is delivered in English.

Course Code

annmldt

Duration Duration

21 hours (usually 3 days including breaks)

Course Outline Course Outline

DAY 1 - ARTIFICIAL NEURAL NETWORKS

Introduction and ANN Structure.

  • Biological neurons and artificial neurons.
  • Model of an ANN.
  • Activation functions used in ANNs.
  • Typical classes of network architectures .

Mathematical Foundations and Learning mechanisms.

  • Re-visiting vector and matrix algebra.
  • State-space concepts.
  • Concepts of optimization.
  • Error-correction learning.
  • Memory-based learning.
  • Hebbian learning.
  • Competitive learning.

Single layer perceptrons.

  • Structure and learning of perceptrons.
  • Pattern classifier - introduction and Bayes' classifiers.
  • Perceptron as a pattern classifier.
  • Perceptron convergence.
  • Limitations of a perceptrons.

Feedforward ANN.

  • Structures of Multi-layer feedforward networks.
  • Back propagation algorithm.
  • Back propagation - training and convergence.
  • Functional approximation with back propagation.
  • Practical and design issues of back propagation learning.

Radial Basis Function Networks.

  • Pattern separability and interpolation.
  • Regularization Theory.
  • Regularization and RBF networks.
  • RBF network design and training.
  • Approximation properties of RBF.

Competitive Learning and Self organizing ANN.

  • General clustering procedures.
  • Learning Vector Quantization (LVQ).
  • Competitive learning algorithms and architectures.
  • Self organizing feature maps.
  • Properties of feature maps.

Fuzzy Neural Networks.

  • Neuro-fuzzy systems.
  • Background of fuzzy sets and logic.
  • Design of fuzzy stems.
  • Design of fuzzy ANNs.

Applications

  • A few examples of Neural Network applications, their advantages and problems will be discussed.

DAY -2 MACHINE LEARNING

  • The PAC Learning Framework
    • Guarantees for finite hypothesis set – consistent case
    • Guarantees for finite hypothesis set – inconsistent case
    • Generalities
      • Deterministic cv. Stochastic scenarios
      • Bayes error noise
      • Estimation and approximation errors
      • Model selection
  • Radmeacher Complexity and VC – Dimension
  • Bias - Variance tradeoff
  • Regularisation
  • Over-fitting
  • Validation
  • Support Vector Machines
  • Kriging (Gaussian Process regression)
  • PCA and Kernel PCA
  • Self Organisation Maps (SOM)
  • Kernel induced vector space
    • Mercer Kernels and Kernel - induced similarity metrics
  • Reinforcement Learning

DAY 3 - DEEP LEARNING

This will be taught in relation to the topics covered on Day 1 and Day 2

  • Logistic and Softmax Regression
  • Sparse Autoencoders
  • Vectorization, PCA and Whitening
  • Self-Taught Learning
  • Deep Networks
  • Linear Decoders
  • Convolution and Pooling
  • Sparse Coding
  • Independent Component Analysis
  • Canonical Correlation Analysis
  • Demos and Applications

Guaranteed to run even with a single delegate!
Public Classroom Public Classroom
Participants from multiple organisations. Topics usually cannot be customised
From $8620
(25)
Private Classroom Private Classroom
Participants are from one organisation only. No external participants are allowed. Usually customised to a specific group, course topics are agreed between the client and the trainer.
From $8620
Request quote
Private Remote Private Remote
The instructor and the participants are in two different physical locations and communicate via the Internet
From $6350
Request quote

The more delegates, the greater the savings per delegate. Table reflects price per delegate and is used for illustration purposes only, actual prices may differ.

Number of Delegates Public Classroom Private Classroom Private Remote
1 $8620 $8620 $6350
2 $4855 $4805 $3670
3 $3600 $3533 $2777
4 $2973 $2898 $2330
Cannot find a suitable date? Choose Your Course Date >>
Too expensive? Suggest your price

Related Categories


Course Discounts

Course Venue Course Date Course Price [Remote/Classroom]
Excel VBA Introduction FL, Aventura - Corporate Center Tue, Sep 13 2016, 9:30 am $1780 / $3460
ORACLE PL/SQL Fundamentals CA, San Diego - Stonecrest IV Mon, Sep 26 2016, 9:30 am $4950 / $7190

Upcoming Courses

Some of our clients